How to create EPICS device support for a simple serial or GPIB
device

W. Eric Norum
norume@aps.anl.gov

October 22, 2007

1 Introduction

This tutorial provides step-by-step instructions on howrtate EPICS support for a simple serial or GPIB (IEEE-488)
device. The steps are presented in a way that should makssthpe to apply them in cookbook fashion to create
support for other devices. For comprehensive descriptiall dhe details of the 1/0 system used here, refer to the
asynDriver and devGpib documentation.

This document isn't for the absolute newcomer though. Yostrhave EPICS installed on a system somewhere and
know how to build and run the example application. In paticyou must have the following installed:

e EPICS R3.14.6 or higher.

e EPICS modules/soft/asyn version 4.0 or higher.

Serial and GPIB devices can now be treated in much the sameTiyEPICS 'asyn’ driver devGpib module can
use the low-level drivers which communicate with serialides connected to ports on the IOC or to Ethernet/Serial
converters or with GPIB devices connected to local I/0 carde Ethernet/GPIB converters.

| based this tutorial on the device support | wrote for a CVéémaCorporation AB300 filter wheel. You're almost
certainly interested in controlling some other device sa ymn’t be able to use the information directly. | chose
the AB300 as the basis for this tutorial since the AB300 hasrg kmited command set, which keeps this document
small, and yet has commands which raise many of the issuegdbdl have to consider when writing support for
other devices.

2 Determine the required I/O operations

The first order of business is to determine the set of operative device will have to perform. A look at the AB300
documentation reveals that there are four commands thatbeusipported. Each command will be associated with
an EPICS process variable (PV) whose type must be apprepoidihe data transferred by the command. The AB300
commands and process variable record types | choose taateseith them are shown in table 1.

There are lots of other ways that the AB300 could be handlédnidht be useful, for example, to treat the filter
position as multi-bit binary records instead.

3 Create a new device support module

Now that the device operations and EPICS process variapéstiiave been chosen it’s time to create a new EPICS
application to provide a place to perform subsequent sofwavelopment. The easiest way to do this is with the
makeSupport.pl script supplied with the EPICS ASYN package

Table 1: AB300 filter wheel commands

CVI Laser Corporation AB300 filter wheel
Command EPICS record type
Reset longout

Go to new position| longout

Query position longin

Query status longin

Here are the commands | ran. You'll have to change/tiwene /EPICS/modules/soft/asyn to the path where your
EPICS ASYN driver is installed.

norume> mkdir ab300
norume> cd ab300
norume> /home/EPICS/modules/soft/asyn/bin/linux-x86/makeSuygort.pl -t devGpib AB300

3.1 Make some changes to the files in configure/

Edit theconfigure/RELEASE file which makeSupport.pl created and confirm that the enttéscribing the paths to
your EPICS base and ASYN support are correct. For exampée timéght be:

ASYN=/home/EPICS/modules/soft/asyn
EPICS_BASE=/home/EPICS/base

Edit theconfigure/CONFIG file which makeSupport.pl created and specify the IOC agchitres on which the appli-
cation is to run. 1 wanted the application to run as a soft I&€,uncommented th&R0SS_COMPILER_TARGET_ARCHS
definition and set the definition to be empty:

CROSS_COMPILER_TARGET_ARCHS =

3.2 Create the device support file

The contents of the device support file provide all the defafilthe communication between the device and EPICS.
The makeSupport.pl command created a skeleton device gufjean AB300Sup/devAB300.c. Of course, device
support for a device similar to the one you're working witloyides an even easier starting point.

The remainder this section describes the changes that | tnalle skeleton file in order to support the AB300 filter
wheel. You'll have to modify the steps as appropriate forryaevice.

3.2.1 Declare the DSET tables provided by the device support

Since the AB300 provides only longin and longout recordstrobshe DSET_xxx define statements can be removed.
Because of the way that the device initialization is perfednyou must define an analog-in DSET even if the device
provides no analog-in records (as is the case for the AB300).

#define DSET_AI devAiAB300
#define DSET_LI devLiAB300
#define DSET_LO devLoAB300

3.2.2 Select timeout values

The default value of IMEWINDOW (2 seconds) is reasonable for the AB300, but | increasedahe\ofTIMEOUT to
5 seconds since the filter wheel can be slow in responding.

#define TIMEOUT

5 /* I/0 must complete within this time */
#define TIMEWINDOW 2

.0
.0 /* Wait this long after device timeout */

3.2.3 Clean up some unused values

The skeleton file provides a number of example charactergsairays. None are needed for the AB300 so | just
removed them. Not much space would be wasted by just leakigrg tn place however.

3.2.4 Declare the command array

This is the hardest part of the job. Here’s where you have toditpow to produce the command strings required to
control the device and how to convert the device response&iRICS process variable values.

Each command array entry describes the details of a sir@legération type. The application database uses the index
of the entry in the command array to provide the link betwédengrocess variable and the 1/0 operation to read or
write that value.

The command array entries | created for the AB300 are shovawb&he elements of each entry are described using
the names from the GPIB documentation.

Command array index 0 — Device Reset

{&DSET_LO, GPIBWRITE, IB_Q_LOW, NULL, "\377\377\033", 10, 10,
NULL, O, O, NULL, NULL, "\033"},

dset This command is associated with an longout record.

type A WRITE operation is to be performed.

pri This operation will be placed on the low-priority queue @ kequests.
cmd Because this is a GPIBWRITE operation this element is unused.

format The format string to generate the command to be sent to thieedewhe first two bytes are the RESET
command, the third byte is the ECHO command. The AB300 seadesponse to a reset command so | send
the 'ECHO’ to verify that the device is responding. The AB3@8ets itself fast enough that it can see an echo
command immediately following the reset command.

Note that the process variable value is not used (there'srintf ff format character in the command string).
The AB300 is reset whenever the EPICS record is processed.

rspLen The size of the readback buffer. Although only one readbatk ts expected | allow for a few extra bytes
justin case.

msgLen The size of the buffer into which the command string is pladedlowed a little extra space in case a longer
command is used some day.

convert No special conversion function is needed.
P1,P2,P3There’s no special conversion function so no argumentsegdead.

pdevGpibNames There’s no name table.

eos The end-of-string value used to mark the end of the readbaeitation. GPIB devices can usually leave this entry
NULL since they use the End-Or-ldentify (EOI) line to deltmiessages.Serial devices which have the same
end-of-string value for all commands couldalso leave ttegees NULL and set the end-of-string value with
theiocsh asynOctetSetinputEos command.

Command array index 1 — Go to new filter position

{&DSET_LO, GPIBWRITE, IB_Q_LOW, NULL, "\017%c", 10, 10,
NULL, 0, O, NULL, NULL, "\030"},

dset This command is associated with an longout record.

type A WRITE operation is to be performed.

pri This operation will be placed on the low-priority queue @ kequests.
cmd Because this is a GPIBWRITE operation this element is unused.

format The format string to generate the command to be sent to thieedeébhe filter position (1-6) can be converted
to the required command byte with the prifitf format.

rspLen The size of the readback buffer. Although only two readbagk$are expected | allow for a few extra bytes
justin case.

msglLen The size of the buffer into which the command string is pladedlowed a little extra space in case a longer
command is used some day.

convert No special conversion function is needed.
P1,P2,P3There’s no special conversion function so no argumentseedead.
pdevGpibNames There’s no name table.

eos The end-of-string value used to mark the end of the readbpekation.

Command array index 2 — Query filter position

{&DSET_LI, GPIBREAD, IB_Q_LOW, "\035", NULL, O, 10,
convertPositionReply, O, O, NULL, NULL, "\030"},

dset This command is associated with an longin record.
type A READ operation is to be performed.
pri This operation will be placed on the low-priority queue @ klequests.

cmd The command string to be sent to the device. The AB300 resporttlis command by sending back three bytes:
the current position, the controller status, and a terrmigat\030°.

format Because this operation has its own conversion functiorefeimient is unused.
rspLen There is no command echo to be read.

msgLen The size of the buffer into which the reply string is placedthdugh only three reply bytes are expected |
allow for a few extra bytes just in case.

convert There’s no sscanf format that can convert the reply from tB8@0 so a special conversion function must be
provided.

P1,P2,P3The special conversion function requires no arguments.
pdevGpibNames There’s no name table.

eos The end-of-string value used to mark the end of the read tpera

Command array index 3 — Query controller status This command array entry is almost identical to the previous
entry. The only change is that a different custom converkiantion is used.

{&DSET_LI, GPIBREAD, IB_Q_LOW, "\035", NULL, O, 10,
convertStatusReply, O, O, NULL, NULL, "\030"},

3.2.5 Write the special conversion functions

As mentioned above, special conversion functions are reeeahvert reply messages from the AB300 into EPICS PV
values. The easiest place to put these functions is justd#iegpibCmds table. The conversion functions are passed
a pointer to thggpibDpvt structure and three values from the command table entrygphieDpvt structure contains

a pointer to the EPICS record. The custom conversion functges this pointer to set the record’s value field.

Here are the custom conversion functions | wrote for the AB30

/%

* Custom conversion routines

*/

static int

convertPositionReply(struct gpibDpvt *pdpvt, int P1, int P2, char **P3)

{
struct longinRecord *pli = ((struct longinRecord *) (pdpvt->precord));
if (pdpvt->msglnputlen != 3) {
epicsSnprintf (pdpvt->pasynUser->errorMessage,
pdpvt->pasynUser->errorMessageSize,
"Invalid reply");
return -1;
}
pli->val = pdpvt->msg[0];
return O;
}

static int
convertStatusReply(struct gpibDpvt *pdpvt, int P1, int P2, char **P3)

{
struct longinRecord *pli = ((struct longinRecord *) (pdpvt->precord));
if (pdpvt->msglnputlen != 3) {
epicsSnprintf (pdpvt->pasynUser->errorMessage,
pdpvt->pasynUser->errorMessageSize,
"Invalid reply");
return -1;
3
pli->val = pdpvt->msg[1];
return 0;
X

Some points of interest:

1. Custom conversion functions indicate an error by retgni.
2. Ifan error status is returned an explanation should liénéifie errorMessage buffer.

3. | putin a sanity check to ensure that the end-of-stringatdtar is where it should be.

3.2.6 Provide the device support initialization

Because of way code is stored in object libraries on diffesystems the device support parameter table must be
initialized at run-time. The analog-in initializer is ustdperform this operation. This is why all device supportsfile
must declare an analog-in DSET.

Here’s the initialization for the AB300 device support. TAB300 immediately echos the command characters sent
to it so the respond2Writes value must be set to 0. All the othleres are left as created by the makeSupport.pl script:

static long init_ai(int pass)

{
if (pass==0) {
devSupParms.name = "devAB300";
devSupParms.gpibCmds = gpibCmds;
devSupParms.numparams = NUMPARAMS;
devSupParms.timeout = TIMEQOUT;
devSupParms.timeWindow = TIMEWINDOW;
devSupParms.respond2Writes = 0;
}
return(0) ;
b

3.3 Modify the device support database definition file

This file specifies the link between the DSET names definedardévice support file and the DTYP fields in the
application database. The makeSupport.pl command createdample file imB300Sup/devAB300.dbd. If you
removed any of th®SET_xxx definitions from the device support file you must remove theesponding lines from
this file.

device(ai, GPIB_IO, devAiAB300, "AB300")
device(longin, GPIB_IO, devLiAB300, "AB300")
device(longout, GPIB_IO, devLoAB300, "AB300")

include "asyn.dbd"

3.4 Create the device support database file

This is the database describing the actual EPICS proceishles associated with the filter wheel.
| modified the fileAB300Sup/devAB300.db to have the following contents:

record(longout, "(P)(R)FilterWheel:reset")
{
field(DESC, "Reset AB300 Controller")
field(SCAN, "Passive")

field(DTYP, "AB300")
field(0OUT, "#L$(L) A$(A) @0")

}
record(longout, "(P)(R)FilterWheel")
{
field(DESC, "Set Filter Wheel Position")
field(SCAN, "Passive")
field(DTYP, "AB300")
field(0OUT, "#L$(L) A$(A) @1")
field(LOPR, 1)
field (HOPR, 6)
}
record(longin, "(P)(R)FilterWheel:fbk")
{
field(DESC, "Filter Wheel Position")
field(SCAN, "Passive")
field(DTYP, "AB300")
field(INP, "#L$(L) A$(A) @2")
field(LOPR, 1)
field (HOPR, 6)
}
record(longin, "(P)(R)FilterWheel:status")
{
field(DESC, "Filter Wheel Status")
field(SCAN, "Passive")
field(DTYP, "AB300")
field(INP, "#L$(L) A$(A) @3")
}
Notes:

1. The numbers following the in the INP and OUT fields are the number of the ‘link’ used to cwmicate with
the filter wheel. This link is set up at run time by commandsimapplication startup script.

2. The numbers following th& in the INP and OUT fields are unused by serial devices but neiat\alid GPIB
address (0-30) since the GPIB address conversion routimeek ¢he value and the diagnostic display routines
require a matching value.

3. The numbers following the in the INP and OUT fields are the indices into the GPIB commareaiya
4. The DTYP fields must match the names specified in the devBRBIBA database definition.
5. The device support database follows the ASYN conventiahthe macros $(P), $(R), $(L) and $(A) are used

to specify the record name prefixes, link number and GPIBesidirespectively.
3.5 Build the device support
Change directories to the top-level directory of your de\sapport and:

norume> make

(gnumakeon Solaris).

If all goes well you'll be left with a device support librarg lib/<EPICS HOST_ARCH>/, a device support database
definition in dbd/ and a device support database in db/.

4 Create a test application

Now that the device support has been completed it's timedatera new EPICS application to confirm that the device
support is operating correctly. The easiest way to do thigtls the makeBaseApp.pl script supplied with EPICS.

Here are the commands | ran. You'll have to change/thiwne /EPICS/base to the path to where your EPICS base is
installed. If you're not running on Linux you'll also havetbange all th& inux-x86 to reflect the architecture you're
using golaris-sparc, darwin-ppc, etc.). | built the test application in the same <top> as tinak support, but
the application could be built anywhere. As well, | built #yeplication as a 'soft’ IOC running on the host machine,
but the serial/GPIB driver also works on RTEMS and vxWorks.

norume> cd ab300
norume> /home/EPICS/base/bin/linux-x86/makeBaseApp.pl -t ioc B300
norume> /home/EPICS/base/bin/linux-x86/makeBaseApp.pl -i -t io AB300
The following target architectures are available in base:
RTEMS-pc386
linux-x86
solaris-sparc
win32-x86-cygwin
vxWorks-ppc603
What architecture do you want to use? linux-x86

5 Using the device support in an application

Several files need minor modifications to use the device stippthe test, or any other, application.

5.1 Make some changes to configure/RELEASE

Edit theconfigure/RELEASE file which makeBaseApp.pl created and confirm that the EPBASE path is correct.
Add entries for your ASYN and device support. For examplesémaight be:

AB300=/home/EPICS/modules/instrument/ab300/1-2
ASYN=/home/EPICS/modules/soft/asyn/3-2
EPICS_BASE=/home/EPICS/base

5.2 Modify the application database definition file

Your application database definition file must include theabase definition files for your instrument and for the
ASYN drivers. There are two ways that this can be done:

1. If you are building your application database definitimmni anxxxInclude.dbd file you include the additional
database definitions in that file. For example, to add sugpothe AB300 instrument and local and remote
serial line drivers:

include "base.dbd"
include "devAB300.dbd"

include "drvAsynIPPort.dbd"
include "drvAsynSerialPort.dbd"

2. If you are building your application database definiticoni the application Makefile you specify the additional
database definitions there:

xxx_DBD += base.dbd

xxx_DBD += devAB300.dbd
xxx_DBD += drvAsynIPPort.dbd
xxx_DBD += drvAsynSerialPort.dbd

5.3 Add the device support libraries to the application

You must link your device support library and the ASYN suppdrary with the application. Add the following lines

XXX_LIBS += devAB300
XXX_LIBS += asyn

before the
XXX_LIBS += $(EPICS_BASE_IOC_LIBS)

line in the applicatioMakefile.

5.4 Modify the application startup script

Thest . cmd application startup script created by the makeBaseApprjgitseeds a few changes to get the application
working properly.

1. Load the device support database records:

cd $(AB300) (cd AB300 if using the vxWorks shell)
dbLoadRecords ("db/devAB300.db", "P=AB300: ,R=,L=0,A=0")

2. Set up the 'port’ between the IOC and the filter wheel.

¢ |f you're using an Ethernet/RS-232 converter or a devicectvliommunicates over a telnet-style socket
connection you need to specify the Internet host and porteurike:

drvAsynIPPortConfigure("LO","164.54.9.91:4002",0,0,0)
e If you're using a serial line directly attached to the IOC ymed something like:

drvAsynSerialPortConfigure("LO","/dev/ttyS0",0,0,0)
asynSetOption("LO", -1, "baud", "9600")
asynSetOption("LO", -1, "bits", "8")
asynSetOption("LO", -1, "parity", "none")
asynSetOption("LO", -1, "stop", "1")
asynSetOption("LO", -1, "clocal", "Y")
asynSetOption("LO", -1, "crtscts", "N")
e If you're using a serial line directly attached to a vxWork3Q you must first configure the serial port

interface hardware. The following example shows the contedo configure a port on a GreenSprings
UART Industry-Pack module.

ipacAddVIPC616_01("0x6000,B0000000")
tyGSOctalDrv(1)

tyGSOctalModuleInit ("RS232", 0x80, 0, 0)
tyGSOctalDevCreate ("/tyGS/0/0",0,0,1000,1000)
drvAsynSerialPortConfigure("LO","/tyGS/0/0",0,0,0)
asynSetOption("LO",-1,"baud","9600")

In all of the above examples the first argument of the configun@ set port option commands is the link
identifier and must match thievalue in the EPICS database record INP and OUT fields. Thendesrgument

of the configure command identifies the port to which the cotioe is to be made. The third argument sets
the priority of the worker thread which performs the 1/O ag@ns. A value of zero directs the command to
choose a reasonable default value. The fourth argumentigadirect the device support layer to automatically
connect to the serial port on startup and whenever the smiabecomes disconnected. The final argument is
zero to direct the device support layer to use standard &stting processing on input messages.

3. (Optional) Add lines to control the debugging level of gerial/GPIB driver. The following enables error
messages and a description of every I/O operation.

asynSetTraceMask("LO",-1,0x9)
asynSetTraceI0Mask("LO",-1,0x2)

A better way to control the amount and type of diagnostic otigpto add an asynRecord to your application.

5.5 Build the application

Change directories to the top-level directory of your agation and:
norume> make

(gnumakeon Solaris).
If all goes well you'll be left with an executable program imbinux-x86/AB300.

5.6 Run the application

Change directories to where makeBaseApp.pl put the apiplicatartup script and run the application:

norume> cd iocBoot/iocAB300

norume> ../../bin/linux-x86/AB300 st.cmd

dbLoadDatabase("../../dbd/AB300.dbd",0,0)
AB300_registerRecordDeviceDriver (pdbbase)

cd ${AB300}

dbLoadRecords ("db/devAB300.db", "P=AB300: ,R=,L=0,A=0")
drvAsynIPPortConfigure("LO","164.54.3.137:4001",0,0,0)
asynSetTraceMask("L0",-1,0x9)

asynSetTraceIOMask("LO",-1,0x2)

iocInit ()

HHH
EPICS IOC CORE built on Apr 23 2004

EPICS R3.14.6 $$Name: $$ $$Date: 2007/09/19 17:28:13 $$
B e S e T s S e s S
Starting iocInit

iocInit: All initialization complete

10

Check the process variable names:

epics>

dbl

AB300:FilterWheel:fbk
AB300:FilterWheel:status

AB300:FilterWheel

AB300:FilterWheel:reset

Reset the filter wheel. The values sent between the I0C arfdtdravheel are shown:

epics> dbpf AB300:FilterWheel:reset O

DBR_LO

NG:

0

0x0

2004/04/21 12:05:14.386 164.54.3.137:4001 write 3 \377\377\033
2004/04/21 12:05:16.174 164.54.3.137:4001 read 1 \033

Read back the filter wheel position. The dbtr command primtsécord before the I/O has a chance to occur:

epics> dbtr AB300:FilterWheel:fbk

ACKS:
ASG:

DISA:
DTYP:
HHSV:

NO_ALARM

0
AB300Gpib
NO_ALARM

HSV: NO_ALARM

LALM:
LOPR:
MLST:
NSTA:
PRIO:
SCAN:
SIMM:
SVAL:
UDF: 1

0

1

0
NO_ALARM
LOW
Passive
NO

0

ACKT:
BKPT:
DISP:
EGU:
HIGH:
HYST:
LCNT:
LOW: O
NAME:
PACT:
PROC:
SDIS:C
SIMS:
TPRO:
VAL: O

YES ADEL: O ALST: O
0x00 DESC: Filter Wheel Position
0 DISS: NO_ALARM DISV: 1

EVNT: O FLNK:CONSTANT O
0 HIHI: O HOPR: 6
0 INP:GPIB_I0 #LO AQO @2
0 LLSV: NO_ALARM LOLO: O

LSV: NO_ALARM MDEL: O
AB300:FilterWheel:fbk NSEV: NO_ALARM
1 PHAS: O PINI: NO
0 PUTF: O RPRO: O
ONSTANT SEVR: INVALID SIML:CONSTANT
NO_ALARM SIOL:CONSTANT STAT: UDF
0 TSE: O TSEL:CONSTANT

2004/04/21 12:08:01.971 164.54.3.137:4001 write 1 \035
2004/04/21 12:08:01.994 164.54.3.137:4001 read 3 \001\020\030

Now the process variable should have that value:

epics> dbpr AB300:FilterWheel:fbk
DESC: Filter Wheel Position DISA: O

ASG:
DISP:
SEVR:
VAL: 1

Move the wheel to position 4:

0
NO_ALARM

DISV:
STAT:

1
NO_ALARM

epics> dbpf AB300:FilterWheel 4

DBR_LO

NG:

4

0x4

NAME: AB300:FilterWheel:fbk
SVAL: O TPRO: O

2004/04/21 12:10:51.542 164.54.3.137:4001 write 2 \017\004
2004/04/21 12:10:51.562 164.54.3.137:4001 read 1 \020
2004/04/21 12:10:52.902 164.54.3.137:4001 read 1 \030

Read back the position:

11

epics> dbtr AB300:FilterWheel:fbk

ACKS: NO_ALARM ACKT: YES ADEL: O ALST: 1

ASG: BKPT: 0x00 DESC: Filter Wheel Position

DISA: O DISP: O DISS: NO_ALARM DISV: 1

DTYP: AB300Gpib EGU: EVNT: O FLNK:CONSTANT O
HHSV: NO_ALARM HIGH: O HIHI: O HOPR: 6

HSV: NO_ALARM HYST: O INP:GPIB_IO0 #LO AQO @2

LALM: 1 LCNT: O LLSV: NO_ALARM LOLO: O

LOPR: 1 LOW: O LSV: NO_ALARM MDEL: O

MLST: 1 NAME: AB300:FilterWheel:fbk NSEV: NO_ALARM
NSTA: NO_ALARM PACT: 1 PHAS: O PINI: NO

PRIO: LOW PROC: O PUTF: O RPRO: O

SCAN: Passive SDIS:CONSTANT SEVR: NO_ALARM SIML:CONSTANT
SIMM: NO SIMS: NO_ALARM SIOL:CONSTANT STAT: NO_ALARM
SVAL: O TPRO: O TSE: O TSEL:CONSTANT
UDF: O VAL: 1

2004/04/21 12:11:43.372 164.54.3.137:4001 write 1 \035
2004/04/21 12:11:43.391 164.54.3.137:4001 read 3 \004\020\030

And it really is 4:

6

epics> dbpr AB300:FilterWheel:fbk

ASG: DESC: Filter Wheel Position DISA: O
DISP: O DISV: 1 NAME: AB300:FilterWheel:fbk
SEVR: NO_ALARM STAT: NO_ALARM SVAL: O TPRO: O
VAL: 4

Device Support File

Here is the complete device support file for the AB300 filtee@lhAB300Sup/devAB300. c):

/*

ES

*/

AB300 device support

#include <epicsStdio.h>
#include <devCommonGpib.h>

/**

* The following define statements are used to declare the names to be used

* for the dset tables.

*

* A DSET_AI entry must be declared here and referenced in an application

* database description file even if the device provides no AI records.

*

stk foksk sk sk ok ki sk ok sk sk sk sk ok sk sk sk ok sk sk ok ok skskosk sk sksksk sk sk sk s ke sksk sk sk ok ksk skosk ok ksk sk sk sk sk sk sk ok sk skok sk ok ok sk sk sk ok /
#define DSET_AI devAiAB300
#define DSET_LI devLiAB300
#define DSET_LO devLoAB300

12

#include <devGpib.h> /* must be included after DSET defines */

#define TIMEOUT 5.0 /* I/0 must complete within this time */
#define TIMEWINDOW 2.0 /* Wait this long after device timeout */
/*

* Custom conversion routines

*/

static int
convertPositionReply(struct gpibDpvt *pdpvt, int P1, int P2, char **P3)
{
struct longinRecord *pli = ((struct longinRecord *) (pdpvt->precord));

if (pdpvt->msgIlnputlen != 3) {
epicsSnprintf (pdpvt->pasynUser->errorMessage,
pdpvt->pasynUser->errorMessageSize,
"Invalid reply");
return -1;
¥
pli->val = pdpvt->msg[0];
return O;
b
static int
convertStatusReply(struct gpibDpvt *pdpvt, int P1, int P2, char **P3)

{
struct longinRecord *pli = ((struct longinRecord *) (pdpvt->precord));

if (pdpvt->msgInputlen != 3) {
epicsSnprintf (pdpvt->pasynUser->errorMessage,
pdpvt->pasynUser->errorMessageSize,
"Invalid reply");
return -1;
¥
pli->val = pdpvt->msg[1];
return O;

}

[/ rsokokokok sk oksksksksk ok ok skskoskokok ki ok kil ok sk ok sk s kskskosk o sk sk sk sk sk sk ok sk skosk ok skskosk ok sksksk sk ok ok sk ok
ES

* Array of structures that define all GPIB messages

* supported for this type of instrument.

*

stk foksk sk sk ok ki sk ok sk sk ok sk sk sk ok ok skl ok skskok sk skskok sk sksksk sk ok sk sk ki skosk ok ksk sk stk sk sk ok sk sksk sk ok ok sksksk ok /

static struct gpibCmd gpibCmds[] = {
/* Param O -- Device Reset */
{4DSET_LO, GPIBWRITE, IB_Q_LOW, NULL, "\377\377\033", 10, 10,
NULL, O, O, NULL, NULL, "\033"},

/* Param 1 -- Go to new filter position */
{&DSET_LO, GPIBWRITE, IB_Q_LOW, NULL, "\017%c", 10, 10,

13

NULL, O, O, NULL, NULL, "\030"},

/* Param 2 -- Query filter position */
{&DSET_LI, GPIBREAD, IB_Q_LOW, "\035", NULL, 0, 10,
convertPositionReply, O, O, NULL, NULL, "\030"},

/* Param 3 -- Query controller status */
{&DSET_LI, GPIBREAD, IB_Q_LOW, "\035", NULL, 0, 10,
convertStatusReply, O, O, NULL, NULL, "\030"}
s

/* The following is the number of elements in the command array above. */
#define NUMPARAMS sizeof (gpibCmds)/sizeof (struct gpibCmd)

[skokokokokok sk sk sk skl sk sk sk sk sk sk ok ok ok ok ok sksk sk sk skl sk sk sk sk sk ok ok ok ok sksksksk sk sk sk sk sk sk ok ok ke ok ok sk sksksk sk sk sk sk sk sk sk ok ok ok koo
*
* Initialize device support parameters
E 3
skesk sk sk sk sk sk sk sk o o ok ok ok ok ok sksk sk sk skskesk sk sk sk sk o ok ke ok ok ok sk sksk sk sk sksksk sk sk sk sk ok ok sk ke ok sk sk sk sksk sk sk sk sksk sk sk ok sk sk okokok sk ok kok /
static long init_ai(int pass)

{
if (pass==0) {
devSupParms.name = "devAB300";
devSupParms.gpibCmds = gpibCmds;
devSupParms.numparams = NUMPARAMS;
devSupParms.timeout = TIMEOUT;
devSupParms.timeWindow = TIMEWINDOW;
devSupParms.respond2Writes = O;
X
return(0) ;
}

7 asynRecord support

The asynRecord provides a convenient mechanism for céingahe diagnostic messages produced by asyn drivers.
To use an asynRecord in your application:

1. Add the line
DB_INSTALLS += $(ASYN)/db/asynRecord.db

to an applicatioMakefile.

2. Create the diagnostic record by adding a line like

cd $(ASYN) (cd ASYN if using the vxWorks shell)
dbLoadRecords ("db/asynRecord.db", "P=AB300,R=Test ,PORT=LO,ADDR=0, IMAX=0,0MAX=0")

to the application startups¢.cmd) script. ThePORT value must match the the value in the corresponding

drvAsynIPPortConfigure Ofr drvAsynSerialPortConfigure command. Theddr value should be that of
the instrument whose I/O you wish to monitor. ThandR values are arbitrary and are concatenated together

14

to form the record name. Choose values which are unique aalbr@Cs on your network.

To run the asynRecord screen, adasynTop>/medm to your EPICS_DISPLAY_PATH environment variable and start
medm withP, R, PORT andADDR values matching those given in theLoadRecords command:

medm -x -macro "P=AB300,R=Test" asynRecord.adl

8 Support for devices with common 'end-of-string’ characters

Devices which use the same character, or characters, toth@dnd of each command or response message need not
specify these characters in the GPIB command table enffiesy can, instead, specify the terminator sequences as
part of the driver port configuration commands. This makes#sible for a single command table to provide support
for devices which provide a serial or Ethernet interfacel (@guire command/response terminators) and also provide
a GPIB interface (which does not require command/respa@rs@rnators).

For example, the configuration commands for a TDS3000 diig#teailloscope connected through an Ethernet serial
port adapter might look like:

drvAsynIPPortConfigure("LO", "192.168.9.90:4003", 0, 0, 0)
asynOctetSetInputEos ("L0",0,"\n")
asynOctetSetOutputEos("L0O",0,"\n")

The configuration command for the same oscilloscope coaddotan Ethernet GPIB adapter would be:

vxiliConfigure("LO", "192.168.8.129", 0, 0.0, "gpibO", 0)

An example command table entry for this device is shown belMutice that there is nan at the end of the command
and that the table 'eos’ field MULL:

/* 2 : read delay : AI x/

{4DSET_AI, GPIBREAD, IB_Q_LOW, "HOR:DEL:TIM?", "J1f", O, 20,
NULL, O, O, NULL, NULL, NULL},

15

	Introduction
	Determine the required I/O operations
	Create a new device support module
	Make some changes to the files in configure/
	Create the device support file
	Modify the device support database definition file
	Create the device support database file
	Build the device support

	Create a test application
	Using the device support in an application
	Make some changes to configure/RELEASE
	Modify the application database definition file
	Add the device support libraries to the application
	Modify the application startup script
	Build the application
	Run the application

	Device Support File
	asynRecord support
	Support for devices with common 'end-of-string' characters

